

Functional Description

The Transmit/Receive (T//R) input determines the direction of the data flow through the bidirectional transceivers. Transmit (active HIGH) enables data from the A-Port to the B-Port; Receive (active LOW) enables data from the B-Port to the A-Port.
The Output Enable ($\overline{\mathrm{OE})}$ input disables the parity and ERROR outputs and both the A and B Ports by placing them in a HIGH-Z condition when the Output Enable input is HIGH.
When transmitting (T/R HIGH), the parity generator detects whether an even or odd number of bits on the A-Port are HIGH and compares these with the condition of the parity
select (ODD/EVEN). If the Parity Select is HIGH and an even number of A inputs are HIGH, the Parity output is HIGH
In receiving mode (T/伿 LOW), the parity select and number of HIGH inputs on port B are compared to the condition of the Parity input. If an even number of bits on the B-Port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, then ERROR will be HIGH to indicate no error. If an odd number of bits on the B-Port are HIGH, the parity select is HIGH, and the PARITY input is HIGH, the ERROR will be LOW indicating an error.

Function Table

Number of Inputs That Are High	Inputs			Input/ Output	Outputs	
	$\overline{\mathrm{OE}}$	T/ \bar{R}	ODD/EVEN	Parity	ERROR	Outputs Mode
0, 2, 4, 6, 8	L	H	H	H	Z	Transmit
	L	H	L	L	Z	Transmit
	L	L	H	H	H	Receive
	L	L	H	L	L	Receive
	L	L	L	H	L	Receive
	L	L	L	L	H	Receive
1,3, 5, 7	L	H	H	L	Z	Transmit
	L	H	L	H	Z	Transmit
	L	L	H	H	L	Receive
	L	L	H	L	H	Receive
	L	L	L	H	H	Receive
	L	L	L	L	L	Receive
Immaterial	H	X	X	Z	Z	Z

L
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance
Function Table

Inputs		Outputs	
$\overline{\mathbf{O E}}$	$\mathbf{T} / \overline{\mathbf{R}}$		
L	L	Bus B Data to Bus A	
L	H	Bus A Data to Bus B	
H	X	High-Z State	

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	
DC Input Diode Current (I_{IK})		Supply Voltage (V_{CC})
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 MA	ACQ 2.0 V to 6.0 V
$V_{1}=V_{C C}+0.5 \mathrm{~V}$	+20 mA	ACTQ 4.5 V to 5.5 V
DC Input Voltage (V_{l})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	
DC Output Diode Current (I_{OK})		Output Voltage (V_{O}) 0 V to V_{CC}
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA	Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	ACQ Devices
DC Output Source		$\mathrm{V}_{\text {IN }}$ from 30% to 70% of $\mathrm{V}_{\text {CC }}$
or Sink Current (I_{O})	$\pm 50 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }}$ @3.0V, 4.5V, 5.5V $125 \mathrm{mV} / \mathrm{ns}$
DC V_{CC} or Ground Current per Output Pin (I I_{CC} or $\mathrm{I}_{\mathrm{GND}}$)	$\pm 50 \mathrm{~mA}$	Minimum Input Edge Rate $\Delta \mathrm{V} / \Delta \mathrm{t}$ ACTQ Devices
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
DC Latch-up Source		$\mathrm{V}_{\text {CC }} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
Sink Current	$\pm 300 \mathrm{~mA}$	Note 1: Absolute maximum ratings are those values beyond which damage
Junction Temperature (T_{J})		to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power
PDIP	$140^{\circ} \mathrm{C}$	supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

DC Electrical Characteristics for ACQ

Symbol	Parameter	V_{CC} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Level Voltage Output	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.85 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	Maximum LOW Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\overline{I_{N}}$ (Note 4)	Maximum Input Leakage Current (T// $\overline{\mathrm{R}}, \overline{\mathrm{OE}}, \mathrm{ODD} / \overline{\mathrm{EVEN}}$ Inputs)	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
IoLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$	Output Current (Note 3)	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC (Note 4)	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
$\mathrm{l}_{\text {Ozt }}$	Maximum I/O Leakage Current ($\mathrm{A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}$ Inputs)	5.5		± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \hline \end{aligned}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5		V	Figures 1, 2 (Note 5)(Note 6)

DC Electrical Characteristics for ACQ (Continued)							
Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ		ranteed Limits		
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.6	-1.2		V	Figures 1, 2 (Note 5)(Note 6)
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	3.1	3.5		V	(Note 5)(Note 7)
$\overline{\mathrm{V} \text { ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	1.9	1.5		V	(Note 5)(Note 7)

Note 4: I_{N} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$
Note 5: DIP package.
Note 6: Max number of outputs defined as (n). Data Inputs are driven OV to 5 V . One output @ GND.
Note 7: Max number of Data Inputs (n) switching. ($n-1$) Inputs switching $0 V$ to 5 V (ACQ).Input-under-test switching: 5 V to threshold ($\mathrm{V}_{\text {ILD }}$), $O V$ to threshold $\left(V_{I H D}\right) f=1 \mathrm{MHz}$.

DC Electrical Characteristics for ACTQ

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \left.\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note } 8\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{LL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 8) \end{aligned}$
$\overline{I_{N}}$	Maximum Input Leakage Current (T/R, $\overline{\mathrm{OE}}, \mathrm{ODD} / \overline{\mathrm{EVEN}}$ Inputs)	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
${ }_{\text {IOZT }}$	Maximum I/O Leakage Current (A_{n}, B_{n} Inputs)	$\begin{aligned} & \hline 5.5 \\ & 5.5 \end{aligned}$		± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
$\mathrm{I}_{\text {CCT }}$	Maximum ICC/Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
Iold	Minimum Dynamic Output Current (Note 9)	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V} \mathrm{Max}$
${ }_{\text {OHD }}$		5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$I_{\text {CC }}$ (Note 4)	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	1.1	1.5		V	Figures 1, 2 (Note 10)(Note 11)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	-0.6	-1.2		V	Figures 1, 2 (Note 10)(Note 11)
$\mathrm{V}_{\text {HD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	1.9	2.2		V	(Note 10)(Note 12)
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	1.2	0.8		V	(Note 10)(Note 12)
Note 8: All outputs loaded; thresholds on input associated with output under test. Note 9: Maximum test duration 2.0 ms , one output loaded at a time. Note 10: DIP package. Note 11: Max number of outputs defined as (n). n-1 Data Inputs are driven $0 V$ to 3 V ; one output @ GND. Note 12: Max number of Data Inputs (n) switching. ($n-1$) Inputs switching $0 V$ to $3 V\left(A C Q\right.$). Input-under-test switching; 3V to threshold ($\mathrm{V}_{\text {ILD }}$), OV to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right) \mathrm{f}=1 \mathrm{MHz}$.							

Symbol	Parameter	V_{CC}(V)(Note 13)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $A_{n} \text { to } B_{n}, B_{n} \text { to } A_{n}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 11.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & \hline 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 12.0 \\ 8.0 \end{gathered}$	ns
$\overline{t_{\text {PLH }}}$ $t_{\text {PHL }}$	Propagation Delay A_{n} to Parity	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 7.0 \end{gathered}$	$\begin{aligned} & 16.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 11.0 \end{aligned}$	ns
$\overline{t_{\text {PLH }}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay ODD/EVEN to PARITY	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 6.5 \end{gathered}$	$\begin{aligned} & \hline 15.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 15.5 \\ & 10.5 \end{aligned}$	ns
tpLH $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay ODD/EVEN to $\overline{\text { ERROR }}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} 10.0 \\ 6.5 \end{gathered}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 15.5 \\ 10.5 \end{gathered}$	ns
$\begin{aligned} & \overline{t_{\mathrm{PLLH}}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay B_{n} to $\overline{\text { ERROR }}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 16.0 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 16.5 \\ & 11.0 \end{aligned}$	ns
$\overline{t_{\text {PLH }}}$ tphL	Propagation Delay PARITY to ERROR	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} \hline 14.0 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \overline{t_{\text {PZH }}} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{A}_{\mathrm{n}} / \mathrm{B}_{\mathrm{n}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} \hline 14.0 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \overline{\mathrm{t}_{\mathrm{PHZ}}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{A}_{\mathrm{n}} / \mathrm{B}_{\mathrm{n}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PZH }} \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\overline{\text { ERROR (Note 15) }}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{ERROR}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 9.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{O E}$ to PARITY	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \overline{t_{\text {PHZ }}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time $\overline{O E}$ to PARITY	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 13.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 9.0 \end{gathered}$	ns
toshl tosth	Output to Output Skew (Note 14) $A_{n}, B_{n} \text { to } B_{n}, A_{n}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	ns
Note 13: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Note 14: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design. Not tested. Note 15: These delay times reflect the 3-STATE recovery time only and not the signal time through the buffers or the parity check circuitry. To assure VALID information at the $\overline{E R R O R}$ pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to PARITY), and to the ERROR output after the ERROR pin has been enabled (Output Enable times). VALID data at the ERROR pin \geq (A to PARITY) +(Output Enable Time).								

AC Electrical Characteristics for ACTQ

Symbol	Parameter	V_{Cc} (V) (Note 16)	$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $A_{n} \text { to } B_{n}, B_{n} \text { to } A_{n}$	5.0	1.5	5.0	8.0	1.5	8.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay A_{n} to Parity	5.0	2.5	7.5	11.0	2.5	11.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay ODD/EVEN to PARITY	5.0	2.5	6.5	10.5	2.5	11.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay ODD/EVEN to $\overline{\text { ERROR }}$	5.0	2.5	6.5	10.5	2.5	11.0	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay B_{n} to $\overline{\mathrm{ERROR}}$	5.0	3.0	7.5	11.0	3.0	11.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & t_{\mathrm{PHL}} \end{aligned}$	Propagation Delay PARITY to $\overline{\text { ERROR }}$	5.0	2.0	6.0	9.5	2.0	10.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{A}_{\mathrm{n}} / \mathrm{B}_{\mathrm{n}}$	5.0	2.0	6.0	9.5	2.0	10.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{A}_{\mathrm{n}} / \mathrm{B}_{\mathrm{n}}$	5.0	1.0	5.0	9.0	1.0	9.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\overline{\mathrm{ERROR}}$ (Note 18)	5.0	2.0	6.0	9.5	2.0	10.0	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & t_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\overline{\text { ERROR }}$	5.0	1.0	6.0	9.0	1.0	9.5	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time $\overline{\mathrm{OE}}$ to PARITY	5.0	2.0	6.0	9.5	2.0	10.0	ns
$\begin{aligned} & \hline t_{\mathrm{PHZ}} \\ & t_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time $\overline{\mathrm{OE}}$ to PARITY	5.0	1.0	5.0	9.0	1.0	9.5	ns
toshl tosth	Output to Output Skew A_{n}, B_{n} to B_{n}, A_{n} (Note 17)	5.0		0.5	1.0		1.0	ns

Note 17: Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs within the same packaged device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshL) or LOW-to-HIGH (tosLH). Parameter guaranteed by design. Not tested.
Note 18: These delay times reflect the 3-STATE recovery time only and not the signal time through the buffers or the parity check circuitry. To assure VALID information at the ERROR pin, time must be allowed for the signal to propagate through the drivers (B to A), through the parity check circuitry (same as A to PARITY), and to the ERROR output after the ERROR pin has been enabled (Output Enable times). VALID data at the ERROR pin \geq (A to PARITY) + (Output Enable Time).

Capacitance

Symbol	Parameter	Typ	Units	
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	160.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:
Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement
5. Set the HFS generator input levels at OV LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

FIGURE 1. Quiet Output Noise Voltage Waveforms
Note 19: $\mathrm{V}_{\text {OHV }}$ and $\mathrm{V}_{\text {OLP }}$ are measured with respect to ground reference.
Note 20: Input pulses have the following characteristics: $\mathfrak{f}=1 \mathrm{MHz}$, $\mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew $<150 \mathrm{ps}$.
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $\mathrm{V}_{\mathrm{OLP}}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$V_{\text {ILD }}$ and $\mathrm{V}_{\text {IHD }}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed $\mathrm{V}_{I H}$ limits. The input LOW voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {ILD }}$
- Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\text {IHD }}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeat ability of the measurements.

www.fairchildsemi.com

